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S

We consider asymptotic approximations to joint posterior distributions in situations
where the full conditional distributions referred to in Gibbs sampling are asymptotically
normal. Our development focuses on problems where data augmentation facilitates simpler
calculations, but results hold more generally. Asymptotic mean vectors are obtained as
simultaneous solutions to fixed point equations that arise naturally in the development.
Asymptotic covariance matrices flow naturally from the work of Arnold & Press (1989)
and involve the conditional asymptotic covariance matrices and first derivative matrices
for conditional mean functions. When the fixed point equations admit an analytical solu-
tion, explicit formulae are subsequently obtained for the covariance structure of the joint
limiting distribution, which may shed light on the use of the given statistical model. Two
illustrations are given.

Some key words: Bayesian approach; Data augmentation; EM algorithm; Fixed point theorem; Gibbs sampling;
Latent data; Screening data.

1. I

The approximation of posterior distributions has a rather long and distinguished his-
tory, dating from Laplace (1774). A definitive theory of large-sample approximations to
posterior distributions has been primarily built upon the contributions of Le Cam (1953,
1958) and von Mises (1964). Simplifications of the more abstract versions of these theories
were published byWalker (1969) and by Chen (1985), while Johnson (1967, 1970) provided
higher-order expansions that clarified both the breadth of applicability of the approxi-
mation of posteriors by normal distributions and the precise relationship of the error of
approximation to the smoothness of the models involved.
This paper is motivated by situations in which the asymptotic behaviour of the posterior

distribution is complex and generally unclear. We have in mind problems in which ‘data
augmentation’ is possible and where, without such augmentation, the posterior distribution
is analytically unmanageable, but where, in the presence of latent data, the posterior
distribution can be established as asymptotically normal. As shown by Tanner & Wong
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(1987) and Gelfand & Smith (1990), the development of computational techniques involv-
ing data augmentation and Gibbs sampling has made it possible to approximate the
posterior distributions of these parameters numerically. Our results provide insight into
when such posteriors can justifiably be treated as normal.
Let d be a p-dimensional parameter with probability density function p(d ), and let Y
be observable data generated from the density p(Y |d ). It may be difficult to handle the
posterior density, p(d |Y ), analytically, while the analysis is greatly simplified by the exist-
ence of the q-dimensional vector of latent data, Z, generated from p(Z |d, Y ). With aug-
mented data (Z, Y ), it is often possible to obtain a recognisable posterior density p(d |Z, Y );
Markov chain Monte Carlo simulation from the full conditional distributions p(Z |d, Y )
and p(d |Z, Y ) then gives (d, Z) pairs that can be used to approximate the joint probability
density p(d, Z |Y ) (Tanner & Wong, 1987; Gelfand & Smith, 1990). Here, we introduce
a joint normal approximation for p(d, Z |Y ) in situations where the full conditional
distributions are approximately normal.
We note that the conditions and methods employed for deriving normal approximations

are also suitable for approximating joint posterior densities of the form p(d, w |Y ), where
the parameter vector is (d, w), and p(d |w, Y ) and p(w |d, Y ) are approximately normal. The
role of w and Z are interchangeable in the development that follows. We restrict our
attention exclusively to the latent-data problem.
The approximation to be developed here differs from standard asymptotic approxi-
mations in several ways. For example, our asymptotics permit the weight of the prior
distribution to grow as the sample size grows, resulting in limiting distributions that may
retain some of the effect of one’s prior modelling. Also, the asymptotics are pivoted on
the solution of certain conditional moment equations.
To contrast our approach with a more standard one, we briefly examine the results

obtained by Laird & Louis (1982), a paper that constitutes, to the best of our knowledge,
the only published work that treats analytically the normal approximation of posterior
distributions in incomplete data problems. Their normal approximation is obtained by
matching the mode and the observed Fisher information matrix of the exact and the
approximating distributions. They demonstrate the consistency of the approximate pos-
terior and discuss the circumstances under which their approximation provides satisfactory
results. We derive an approximating normal distribution under quite different assumptions
and by quite different means. In an example in which both methods apply, they are shown
to provide very similar results.
Section 2 describes a framework in which approximate normality of p(d, Z |Y ) is shown
to be tenable from asymptotic theory arguments. From this result, an asymptotic normal
approximation for d |Y is an immediate consequence. Section 3 contains examples and is
followed by discussion in § 4.

2. T   

2·1. Definitions, assumptions and preliminary results

In order to develop our asymptotics, we embed the variables (d, Y , Z) into a sequence
of problems indexed by n; for example we consider (d

n
, Y
n
, Z
n
), as n�2. We thus have

sequences of densities p
n
(d
n
), p
n
(Y
n
|d
n
), p
n
(d
n
|Z
n
, Y
n
) and p

n
(Z
n
|d
n
, Y
n
). For each n, the

distributions corresponding to p
n
(d
n
|Z
n
, Y
n
) and p

n
(Z
n
|d
n
, Y
n
) are compatible when they

define a joint distribution corresponding to p
n
(d
n
, Z
n
|Y
n
) (Arnold & Press, 1989). The

following definitions and assumptions set conditions under which such a sequence of
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problems will result in a marginal posterior distribution for d
n
that is asymptotically

normal.
Since all the analyses that follow are conditioned on the known value of the observed

data, Y
n
will be treated as a fixed sequence as in Johnson & Gastwirth (1991). We assume

that properly normalised data Y
n
converge to a limit m

Y
as n�2.We define the sequences

of conditional mean functions M
n,Z
( . ) and M

n,d
( . ), and assume that they converge as

n�2:

M
n,Z

(s)¬E(Z
n
|d
n
=s, Y

n
)�M

Z
(s), M

n,d
(t)¬E(d

n
|Z
n
=t, Y

n
)�M

d
(t).

For simplicity, we denote the two conditional moments above by f (s)=M
n,Z

(s) and
g(t)=M

n,d
(t) respectively. Our developments rely upon the existence of a point (s*, t*)

for which t*= f (s*) and s*=g(t*). The existence and uniqueness of such points are
questions that arise in the study of fixed point theorems; see for example Small (1974).
We pause briefly to describe the applicable results in this area.
The function f in the preceding paragraph can be pictured as a graph in the (s, t) plane,

while the function g can be pictured as a graph in the (t, s) plane. The points of interest
are those where these two graphs intersect if drawn together. Equivalently, we are inter-
ested in fixed points of the composition mappings, that is values s* and t* for which s*=
g{ f (s*)} and t*= f{g(t*)}. Existence of such values is guaranteed by the Brouwer Fixed
Point Theorem when f and g are continuous functions and the domains of the two
compositions are compact, convex sets in a Euclidean space. More general results exist.
For example Schauder’s Fixed Point Theorem applies to general normed spaces, but the
latter are not required by the applications envisaged and will not be discussed here.
The uniqueness of the point (s*, t*) above is a delicate matter. The primary applicable
result is the Banach Contraction Theorem, which gives a sufficient, but not necessary,
condition for uniqueness; in particular it states that any contraction mapping of a complete
nonempty metric space into itself has a unique fixed point. In the applications of interest
here, uniqueness of the solution (s*, t*) is guaranteed if both composition mappings f 0 g
and g 0 f are contractions, but these conditions are extremely stringent and would typically
be violated. It is nonetheless possible to argue for the uniqueness of the point (s*, t*) on
other grounds, as will be seen by example in § 2·2. Since the conditions of the Brouwer
Theorem hold in the applications we discuss, the existence of solutions (s*, t*) is not
an issue.
Translating these general remarks into the specific statistical setting introduced above,

we assume that a solution exists that satisfies the following system of equations:

m
n,Z
¬M

n,Z
(m
n,d

), m
n,d
¬M

n,d
(m
n,Z

). (1)

To facilitate asymptotic theory arguments, define the standardisations d*
n
¬

√n(d
n
−m
n,d

) and Z*
n
¬√n(Z

n
−m
n,Z

), and note that conditioning upon d
n
or Z
n
is equival-

ent to conditioning upon d*
n
or Z*
n
respectively.

We require the following additional assumptions.

Assumption 1. The distribution for (Z
n
|d
n
, Y
n
) satisfies

√n{Z
n
−E(Z

n
|d
n
, Y
n
)}| (d
n
, Y
n
)�W

1
~N
q
(0, S
Z
),

in distribution, as n�2, where S
Z
is positive definite.
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Assumption 2. The distribution for (d
n
|Z
n
, Y
n
) satisfies

√n{d
n
−E(d

n
|Z
n
, Y
n
}| (Z
n
, Y
n
)�W

2
~N
p
(0, S
d
),

where S
d
is positive definite.

Assumption 3. The vector functions M
n,Z
and M

n,d
have finite second derivatives and

continuous first partial derivatives,

Ṁ
n,Z

(s)¬
∂
∂d∞

M
n,Z

(d )K
d=s

, Ṁ
n,d

(s)¬
∂
∂Z∞

M
n,d

(Z)K
Z=s

,

where Ṁ
n,Z

(d ) is a q×p matrix with (i, j )th element ∂{M
n,Z

(d )}
i
/∂d
j
, and Ṁ

n,d
(Z) is a p×q

matrix with (i, j )th element ∂{M
n,d

(Z)}
i
/∂Z
j
.

Assumption 4. There exists a sequence of solutions (m
n,d

, m
n,Z
) for the system of equations

(1) converging to the limit (m
d
, m
Z
) so that, in conjunction with the previous assumption,

the following limits exist, as n�2:

Ṁ
n,Z

(m
n,d

)�Ṁ
Z
(m
d
)¬Ṁ

Z
, Ṁ

n,d
(m
n,Z

)�Ṁ
d
(m
Z
)¬Ṁ

d
.

2·2. Results

The left-hand side of the expressions in Assumptions 1 and 2 may be expressed in terms
of the standardised variables d*

n
and Z*

n
. Assumption 3 allows us to use a Taylor expansion

of the function M
n,Z

(d
n
) about d

n
=m
n,d
and of the function M

n,d
(Z
n
) about Z

n
=m
n,Z
. By

conditioning on a sequence of (d*
n
, Y
n
) values that converges to an arbitrary value (d*, m

Y
)

and applying Taylor’s approximation, we obtain
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where the last equality follows from Assumption 4. Thus, conditional on a sequence
{d*
n
, Y
n
} that converges to a realisation (d*, m

Y
), then, by Assumption 1,

(Z*
n
−Ṁ

Z
d*
n
|d*
n
, Y
n
)�W

1
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q
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Z
),

in distribution. By a parallel argument, conditional on a sequence (Z*
n
, Y
n
) that converges

to (Z*, m
Y
),
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n
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d
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|Z*
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d
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It is shown in Appendix 1 that the conditions
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d
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=Ṁ∞

Z
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Z
, (3a)
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d
Ṁ
Z
)−1S

d
>0 or (I−Ṁ

Z
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)−1S

Z
>0, (3b)
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where >0 indicates that the corresponding matrix is positive definite, are equivalent to
condition (ii) of Theorem 4.1 in Arnold & Press (1989). Since condition (i) of their theorem
holds automatically for this problem, the compatibility of the two limiting conditional
distributions in (2) is guaranteed. Thus, there exists a joint distribution with these con-
ditionals. The condition in (3a) is necessary for the limiting covariance matrix to be
symmetric and will be termed the symmetry condition. We thus obtain the limiting joint
normal distribution (d*, Z* |Y=m

Y
)~N

p+q
(m, S ), where m∞= (0, 0) and

S=A (I−Ṁ
d
Ṁ
Z
)−1S

d
(I−Ṁ

d
Ṁ
Z
)−1Ṁ

d
S
Z

(I−Ṁ
Z
Ṁ
d
)−1Ṁ

Z
S
d

(I−Ṁ
Z
Ṁ
d
)−1S

Z
B , (4)

which is also derived in Appendix 1. For sufficiently large values of n, we can approximate
the distribution for d

n
|Y
n
byN{m

n,d
, (I−Ṁ

d
Ṁ
Z
)−1S

d
/n}.

When the solutions m
n,d
and m

n,Z
to the system of equations (1) are analytically tractable,

the normal approximation for the distribution of (d
n
, Z
n
|Y
n
) is in closed form and is thus

free from iterative routines. In § 3·1, we present a genetic linkage example as one appli-
cation for which a normal approximation to the posterior distribution can be derived
with only a simple hand calculator. A second illustration involving screening test data,
presented in § 3·2, requires equations (1) to be solved numerically using a recursive algor-
ithm similar to the  algorithm. The method converges very quickly for this problem.

Remark 1. A referee has asked whether or not the compatibility conditions (3) need to
be checked since, for each n, we have a proper joint distribution that must necessarily
lead to compatible conditionals. The symmetry condition part of compatibility for fixed
n requires that the ratio of the conditional densities must factorise as the product of a
term involving only d and a term involving only Z, and it seems reasonable that this
might hold in the limit. However, we have been unable to establish this result analytically.
For any given problem, it is straightforward to determine that the conditions (3) hold
numerically. In our experience, we have always been able to verify the symmetry condition
analytically.

Remark 2. While in our presentation we have developed conditional mean equations,
we could just as well have focused on conditional mode equations. There will be many
situations where there is no analytical form for the conditional means, and consequently
the conditional mode is a natural alternative. The corresponding conditional mode equa-
tions could then be solved iteratively by a general numerical algorithm. In these instances
one could obtain the conditional covariance matrices as the inverses of minus the second
derivative matrices for the log conditionals. These matrices would then be evaluated at
the solution to the fixed-point mode equations. We believe that it is feasible to develop
general-purpose software for implementing this modification of what has been presented
here and we are currently exploring this possibility. In Appendix 2, we present a numerical
algorithm for obtaining the normal approximation in our second illustration below.

3. I

3·1. Genetic linkage example

We first revisit the genetic linkage problem, which was first treated by Rao (1973, p. 368)
and also discussed rather extensively in the data augmentation literature (Dempster et al.,
1977; Laird & Louis, 1982; Tanner & Wong, 1987). The problem is identifiable and the
estimation of d using our method can be compared with a method based on obtaining
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the posterior mode with the expectation-maximisation algorithm in conjunction with the
large-sample variance approximation of Laird & Louis (1982), and with a standard Gibbs
sampling approach. Our technique can be performed analytically with the aid of only a
simple calculator. In both this and the following example, all subscripts n have been
suppressed.
The observed data take the form of a multinomial vector,

Y¬ (Y
1
, Y
2
, Y
3
, Y
4
)∞~Mu qn, A12+ d4 ,

1−d
4

,
1−d

4
,
d

4Br .
The corresponding likelihood in conjunction with a Be(a, b) prior for d does not result in
a recognisable posterior density for d, while if the data

(Y
1
−Z, Z, Y

2
, Y
3
, Y
4
)∞~Mu qn, A12 ,

d

4
,
1−d

4
,
1−d

4
,
d

4Br
were observed, we would obtain the posterior (d |Z, Y )~Be (Z+Y4+a, Y2+Y3+b). The
latent variable Z, conditional on d and Y, has distribution (Z |d, Y )~Bi{Y1 , d/(d+2)},
and is standardised as Z*=√n(Z/n−mZ ). From (1), we obtain the finite-n equations

m
d
=M

d
(m
Z
)=E(d |Z/n=m

Z
, Y )=

nm
Z
+Y
4
+a

nm
Z
+Y
2
+Y
3
+Y
4
+a+b

,

m
Z
=M

Z
(m
d
)=E(Z |d=m

d
, Y )=

Y
1

n

m
d

m
d
+2

.

(5)

The existence and uniqueness of solutions to the equations (5) merit some commentary.
Since the arguments m

d
and m

Z
are constrained to lie in the closed unit interval [0, 1],

and since the functions involved are both rational functions of their arguments and con-
tinuous in [0, 1], solutions of these equations are guaranteed to exist in the unit square.
Since the two rational functions involved are monotone in [0, 1], there can be but one
such solution. Solving for this reveals that there are actually two points in the plane that
solve these equations simultaneously, one of them lying outside the unit square and thus
being an extraneous solution.
We assume that a/n�a*�0 and b/n�b*�0. As a consequence, the information in
the prior need not disappear as the sample size increases. If we assume that Y /n�m

Y
, as

n�2, the limits in Assumption 4 exist. The limiting solution (m
Z
, m
d
) can be obtained

analytically and inserted into the derivative functions defined in Assumption 3 to obtain
Ṁ
Z
and Ṁ

d
. The asymptotic conditional variances evaluated at the solutions to the limiting

mean equations, S
d
and S

Z
, are

S
d
=

m
d
(1−m

d
)

m
Z
+m
Y
2

+m
Y
3

+m
Y
4

+a*+b*
, S
Z
=
m
Y
1

m
d

m
d
+2 A1− m

d
m
d
+2B= 2m

Y
1

m
d

(m
d
+2)2

.

The symmetry condition in (3a) is verified analytically by showing that Ṁ
d
/S
d
=

Ṁ
Z
/S
Z
=1/m

d
. Analytical results for positive definiteness can also be established with

some effect. However they do not appear to add sufficient insight relative to their
complexity, so we simply note the positive definiteness for the given data and prior at hand.
Tanner & Wong (1987) presented data with values n=197, Y2=18, Y3=20 and Y4=

34. With a uniform prior on d the solution to (1) is (m
Z
, m
d
)= (0·1509, 0·6240). Also,

substituting Y /n for m
y
, we obtain S

d
=0·4456, S

Z
=0·1150, Ṁ

Z
=0·1843 and Ṁ

d
=0·7141.
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Finally, our normal approximation for the distribution of d |Y has mean 0·6240 and stan-
dard deviation 0·0511. This is consistent with the  analysis of Laird & Louis (1982),
which produced a normal approximation with mean 0·6268 and standard error 0·0515;
Gibbs sampling produced a posterior mean of 0·63 and a standard deviation of 0·05.

3·2. A screening test problem

Medical diagnostic tests are performed to determine whether or not a subject has a
particular disease or condition. The performance of medical screening tests for a disease
is measured by calculating the probabilities of correct diagnoses. The sensitivity of a test
is the probability of correctly diagnosing the disease, while the specificity is the probability
of correctly indicating that it is not present. These probabilities can be easily estimated
by administering the test to patients whose actual disease status is known. The following
illustrates a two-test scenario for which there is no gold standard or perfect test available
for determining disease status with certainty.
Let the prevalence, or proportion of the disease in the population, be p. Denote the

sensitivities of the tests by g1 and g2 and the specificities by h1 and h2 , and assume that
test outcomes on each unit tested are independent, conditional on disease status, as in
Hui & Walter (1980), Joseph et al. (1995) and Johnson et al. (2001). Both tests are
conducted on the same set of subjects and their results can be summarised, as in Table 1,
as Y¬{Y

ij
}. Note that + indicates diagnosis of the disease and, for example, the value

Y12 represents the number of subjects who were diagnosed by the first test as having
the disease and by the second test as not having it. The total number of subjects tested
is n=Y11+Y12+Y21+Y22 , and

{Y
ij
}~Mu (n, {p

ij
}),

with p11=pg1g2+ (1−p) (1−h1 ) (1−h2 ), and so on. There are five parameters and
the data are only three-dimensional so an informative prior is required (Neath &
Samaniego, 1997).

Table 1. T wo-test data.

Test 2
Test 1 + −

+ Y11 Y12
− Y21 Y22

Complete and ideal data would consist of the observed table {Y
ij
} and the corresponding

table that gives counts for individuals who actually have the disease, Z¬{Z
ij
}, say. The

likelihood based on the augumented data is

pZΩΩ(1−p)n−ZΩΩgZ1Ω1 (1−g
1
)Z
2ΩgZΩ12

(1−g
2
)ZΩ2hY2Ω−Z2Ω1

(1−h
1
)Y
1Ω−Z1ΩhYΩ2−ZΩ22

(1−h
2
)YΩ1−ZΩ1,

where the dot notation indicates summation over the corresponding index.
Uncertainty about the five parameters, d¬ (g1 , g2 , h1 , h2 , p), is modelled with indepen-
dent Beta distributions (Joseph et al., 1995) with respective hyperparameters (a

1g
, b
1g

),
(a
2g

, b
2g

), (a
1h

, b
1h

), (a
2h

, b
2h

) and (a
p
, b
p
). Full conditional distributions are independent

and Beta; for example, (g1 |Z, Y )~Be (a
1g
+Z
1Ω

, b
1g
+Z
2Ω

). The distributions for the
elements of Z conditional on (d, Y ) are also independent and binomial; for example,
Z11 |d, Y~Bi (Y11 , g1g2p/p11 ). Full details of the Gibbs sampler and of the implementation
of our approximation are given in Appendix 2.
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The components of Y will be large if n is large and if the p
ij
’s are all bounded away

from zero. The full conditional distributions for components of Z are thus approximately
normal provided that the corresponding conditional probabilities are also bounded away
from zero. If the prevalence, p, were very low or high, our assumptions would not apply.
The five independent Beta conditionals will be approximately normal provided their par-
ameters are ‘large’, which is guaranteed if the hyperparameters of the prior are ‘large’. In
our experience, a Beta is well approximated by a normal if the interval defined by the
mean plus or minus three standard deviations is contained in the unit interval.
We reconsider the Strongyloides infection data discussed in Joseph et al. (1995) and we

use the priors elicited by them. The data are Y11=38, Y12=87, Y21=2 and Y22=35, and
the hyperparameters for the prior are (a

1g
, b
1g
)= (21·96, 5·49), (a

2g
, b
2g
)= (4·44, 13·31),

(a
1h

, b
1h
)= (4·1, 1·76), (a

2h
, b
2h
)= (71·25, 3·75) and (a

p
, b
p
)= (1, 1). With the help of SAS

software, the limiting means, gradients of the means and covariances for d and Z were
obtained numerically, and the compatibility conditions were checked. Details of the com-
plete algorithm are given in Appendix 2. The symmetry condition was checked analytically
but details are not given here.
The normal approximation is compared with correspondingMarkov chainMonte Carlo

results, which were obtained by using WinBUGS version 1.3 software. Table 2 shows that
the means and standard deviations obtained from the normal approximation agree well
with the Monte Carlo estimates.

Table 2. Posterior means and standard deviations (in parentheses) for the
Strongyloides infection prevalence. T he first two methods use the data and prior
information discussed in Joseph et al. (1995), while the last two methods use 10 times

the data and prior hyperparameters

Method p g1 g2 h1 h2
Normal ×1 0·7595 0·8914 0·3074 0·6814 0·9581

(0·0952) (0·0394) (0·0480) (0·1843) (0·0210)

Monte Carlo ×1 0·7589 0·8837 0·3103 0·6875 0·9570
(0·1021) (0·0419) (0·0525) (0·1612) (0·0214)

Monte Carlo error [5·4×10−4] [1·5×10−4] [2·3×10−4] [7·4×10−4] [6·0×10−5]

Normal ×10 0·7595 0·8914 0·3074 0·6814 0·9581
(0·0301) (0·0125) (0·0152) (0·0583) (0·0066)

Monte Carlo ×10 0·7584 0·8909 0·3079 0·6815 0·9580
(0·0305) (0·0125) (0·0154) (0·0573) (0·0066)

Monte Carlo error [1·6×10−4] [3·9×10−5] [6·1×10−5] [2·9×10−4] [1·6×10−5]

It is clear, however, that the normal approximation will not be very good for h1 in
particular since the posterior mean plus two standard deviations is larger than one. We
plotted each of the approximations along with the Monte Carlo density approximations
obtained by Gibbs sampling and found the fit for g2 to be very good, the fit for g1 to be
good, the fit for p to be adequate, and the fits for h1 and h2 to be inadequate because of
left skewness. The combined amount of information in the data and the priors is therefore
not sufficient for the normal approximation to be adequate overall. However, we also
considered the same data and prior information, only multiplied by ten. All plots of exact
versus normal approximation were practically identical in this instance. Table 2 also gives
means and standard deviations for these data and it is seen that all posteriors are now
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Fig. 1. Monte Carlo (solid) and normal approximation (dashed) estimates for
posterior densities of Strongyloides prevalence, p, using (a) 1 times and (b) 10 times

the data and prior hyperparameters from Joseph et al. (1995).

well concentrated within the interval (0, 1). Figure 1 gives posterior density estimates for
the prevalence, p, with the actual data and prior, and the version with ten times the weight.

Remark 3. A referee was concerned about the adequacy of the normal approximation
for this problem when only the sample size was allowed to grow, holding the weight on
the prior fixed. To address this issue, we considered a number of situations using versions
of the screening data where the sample size was allowed to grow relative to the prior.
With the larger sample sizes and fixed prior, the joint posterior becomes increasingly
concentrated on a three-dimensional subspace of the five-dimensional parameter space,
and this evidently makes Monte Carlo sampling difficult. We generally found that, pro-
vided the weight on the prior was not too small relative to that for the data, and that the
weight on the prior and the data were sufficiently large, our asymptotics worked well. For
example, taking 10 000 times the data, and 1000 or 10 000 times the prior results in easy
Gibbs sampling and an excellent normal approximation. With 100 times the prior, Gibbs
sampling becomes difficult but, with some effort, we believed the Gibbs sampler had
converged and that the normal approximation was very good. Taking a lower weight on
the prior resulted in a Gibbs sampler than was extremely difficult and we were not able
to verify that the asymptotics were correct. It may be useful to explore the possibility of
an alternative parameterisation as in Gelfand & Sahu (1999) for both achieving conver-
gence of the Gibbs sampler and obtaining a good normal approximation. Moreover,
Gustafson et al. (2001) devised a special purpose Markov chain Monte Carlo algorithm
for a related problem that evidently worked well despite the nonidentifiability. We note
that, if a second sample of data were available from a second population with distinct
prevalence as in Johnson et al. (2001), then the corresponding statistical model would be
identifiable and our asymptotics would apply without regard to the weight on the prior.

4. D

Like the Gibbs sampler, our normal approximation method can be extended to situ-
ations involving more than two conditional distributions. One may wonder about the
utility of a new method for obtaining asymptotic posteriors at a time when straightforward
Markov chain Monte Carlo methods can be used to give results that do not depend on
large-sample theory. In the screening example, with an admittedly nonidentifiable model,
we found situations where the sample size was large and where obtaining convergence of
the Gibbs sampler was difficult, but where our asymptotic methods worked very well.
Moreover, the unpublished 2001 University of California, Davis Ph.D. dissertation of
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Chun-Lung Su develops these methods further, obtaining asymptotic posterior results for
the linear mixed model. Explicit covariance matrices are obtained that shed light on the
models and parameterisations considered.
Standard Bayesian asymptotics postulate that the prior distribution is fixed, and that,

when supported on the entire parameter space, its influence becomes negligible as the
sample size n increases. The present work allows one to derive large-sample approxi-
mations in cases in which the prior information deserves substantial weight.
On the negative side, it can be expected that posterior approximations will be poor

whenever the posterior mean of any component is less than two standard deviations from
a boundary of the parameter space. It is encouraging to see that the normal approximation
suggested here, especially with regard to posterior moments, can perform reasonably well
for a problem with modest sample size, as demonstrated in the screening example.

A

We thank Chun-Lung Su for his helpful comments and for verifying analytically the
symmetry condition for the screening example. We also thank Alan Edelsen for helpful
discussions regarding fixed point theory, and two referees for insightful commentary that
led to an improved manuscript.

A 1
Discussion of compatibility and its role in the derivation of a joint normal distribution from

compatible normal conditionals

Arnold & Press (1989) pointed out that, for compatible conditional distributions, there exists a
joint distribution with the corresponding conditionals. They present, in their Theorem 4.1, the
equivalence of compatibility and two particular conditions. Their first condition, (i), is automatically
satisfied for our problem. The second condition, (ii), involves two parts where the first part, which
we have termed the ‘symmetry’ condition, is assessed as follows. For two conditional densities
that are derived from the same joint density, p

Y|X
(y |x) and p

X|Y
(x |y), say, we must have

p
Y|X

(y |x)/p
X|Y

(x |y)=p
Y
(y)/p
X
(x).

Thus for any given conditional densities to be compatible, the ratio of the conditionals must
factorise as the product of separate functions of x and y. The second part of their condition (ii)
simply asserts that one of these functions in the factorisation must be integrable.
For normal conditional distributions, the symmetry condition exists if and only if

(y−m
Y|X

)∞S−1
Y|X

(y−m
Y|X

)− (x−m
X|Y

)∞S−1
X|Y

(x−m
X|Y

) (A1)

is free of xy terms. In the special case where the conditional means are linear combinations of the
conditioned variables and the variances are constant, that is m

X|Y=y
=Ay+E, m

Y|X=x
=Bx+F,

S
X|Y=y

=C, S
Y|X=x

=D, the xy term in (6) is

−2(y∞S−1
Y|X

Bx−x∞S−1
X|Y

Ay)=−2y∞(S−1
Y|X

B−A∞S−1
X|Y
)x=−2y∞(D−1B−A∞C−1 )x,

which is identically 0 if and only if the symmetry condition, D−1B=A∞C−1, holds. Note that this
can be written as B∞D−1=C−1A.
Next, note that

p
X|Y

(x |y)/p
Y|X

(y |x)3exp{−0·5(x−m
X
)∞(C−1−B∞D−1B)(x−m

X
)},

which is integrable if and only if C−1−B∞D−1B>0. If the conditionals are compatible, this
expression must be proportional to p

X
(x). Thus, condition (ii) of Arnold & Press (1989) is satisfied

if and only if the symmetry condition holds and if C−1−B∞D−1B=C−1(I−AB)>0, which holds
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if and only if (I−AB)−1C>0. We have thus established that (3) is equivalent to compatibility for
our limiting conditional normal distributions.
We now derive the joint normal distribution under these two assumptions. When the compatible
conditional distributions X |Y~N(AY+E, C), Y |X~N(BX+F, D) determine a joint normal
distribution of the form

AXY B~N AAmXm
Y
B , ASXX SXYS

YX
S
YY
BB ,

then

A=S
XY
S−1
YY
, C=S

XX
−S
XY
S−1
YY
S
YX
, E=m

X
−S
XY
S−1
YY
m
Y
,

B=S
YX
S−1
XX
, D=S

YY
−S
YX
S−1
XX
S
XY
, F=m

Y
−S
YX
S−1
XX
m
X
.

If we solve for m
X
, m
Y
, S
XX
, S
XY
=S∞
YX
and S

YY
in terms of A, B, C, D, E and F, it can be verified

that

ASXX SXYS
YX
S
YY
B=A (I−AB)−1C (I−AB)−1AD

(I−BA)−1BC (I−BA)−1D B ,
m
X
= (I−S

XY
S−1
YY
S
YX
S−1
XX
)−1(E+S

XY
S−1
YY

F), m
Y
=F+S

YX
S−1
XX
m
X
.

A 2
Details for the screening example

Let a
d
and b

d
denote the vectors of hyperparameters for the priors and assume that a

d
/n�a*

d
and b

d
/n�b*

d
as n�2, where all limiting components are positive. The full conditional distri-

butions for (Z
ij
|Y, d ) are independent and binomial, namely Z

ij
|Y, d~Bi (Y

ij
, p
ij
), where

{p
ij
}¬{p

ij
(d )}=Ap11 (d ) p

12
(d )

p
21

(d ) p
22

(d )B
=A g

1
g
2
p

g
1
g
2
p+ (1−h

1
) (1−h

2
) (1−p)

g
1
(1−g

2
)p

(1−h
1
)h
2
(1−p)+g

1
(1−g

2
)p

(1−g
1
)g
2
p

(1−g
1
)g
2
p+h

1
(1−h

2
) (1−p)

(1−g
1
) (1−g

2
)p

(1−g
1
) (1−g

2
)p+h

1
h
2
(1−p)B .

The full conditionals for (d
i
|Y, Z) are independent and Beta, namely

(p |Z, Y )~Be (a
p
+Z
ΩΩ

, b
p
+Y
ΩΩ
−Z
ΩΩ

), (g
1
|Z, Y )~Be (a

1g
+Z
1Ω

, b
1g
+Z
2Ω

),

(g
2
|Z, Y )~Be (a

2g
+Z
Ω1

, b
2g
+Z
Ω2

), (h
1
|Z, Y )~Be (a

1h
+Y
2Ω
−Z
2Ω

, b
1h
+Y
1Ω
−Z
1Ω

),

(h
2
|Z, Y )~Be (a

2h
+Y
Ω2
−Z
Ω2

, b
2h
+Y
Ω1
−Z
Ω1

).

The limiting fixed point equations are

m
Z
ij

=m
Y
ij

p
ij
(m
d
), m

1h
=

a*
1h
+m
Y
2Ω
−m
Z
2Ωa*

1h
+b*
1h
+m
YΩΩ
−m
ZΩΩ

, m
2h
=

a*
2h
+m
YΩ2
−m
ZΩ2a*

2h
+b*
2h
+m
YΩΩ
−m
ZΩΩ

,

m
p
=

a*
p
+m
ZΩΩ

a*
p
+b*
p
+m
YΩΩ

, m
1g
=

a*
1g
+m
Z
1Ωa*

1g
+b*
1g
+m
ZΩΩ

, m
2g
=

a*
2g
+m
ZΩ1a*

2g
+b*
2g
+m
ZΩΩ

;

the solution is denoted by (m
d
, m
Z
). The limiting variances for the normalised conditional distri-
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butions are

S
Z
ij

=
m
Z
ijm
Y
ij

A1−mZijm
Y
ij

B , Sp= m
p
(1−m

p
)

a*
p
+b*
p
+m
YΩΩ

, S
1g
=
m
1g

(1−m
1g

)

a*
1g
+b*
1g
+m
ZΩΩ

,

S
2g
=
m
2g

(1−m
2g

)

a*
2g
+b*
2g
+m
ZΩΩ

, S
1h
=

m
1h

(1−m
1h

)

a*
1h
+b*
1h
+m
YΩΩ
−m
ZΩΩ

, S
2h
=

m
2h

(1−m
2h

)

a*
2h
+b*
2h
+m
YΩΩ
−m
ZΩΩ

,

and S
Z
=block diagonal{S

Z
ij

} and S
d
=block diagonal{S

d
i

}.
The normal approximation for the posterior distribution can be computed by assuming that

a
d
/n, b
d
/n and Y /n have approached their limits, and then by following the following steps.

Step 1. Initialise i=0 and d@ (0)=E(d ).

Step 2. Update estimates: ZC (i)=E(Z |d, Y ) |
d=d@(i−1)

, d@ (i)=E(d |Z, Y ) |
Z=ZC(i)

.

Step 3. Check for convergence. Is the Euclidean distance between the current and previous
vectors of iterates less than some tolerance? If not, then increment i and repeat Steps 2–3. If so,
then m

Z
=ZC (i) and m

d
=d@ (i).

Step 4. Calculate numerically the moment derivatives

Ṁ
Z
=
∂
∂d∞

E(Z |d, Y ) |
d=m
d

, Ṁ
d
=
∂
∂Z∞

E(d |Z, Y ) |
Z=m
Z

.

Step 5. Obtain the asymptotic variance–covariance matrices

S
Z
= lim
n�2

n cov (Z |d, Y ) |
d=m
d

, S
d
= lim
n�2

n cov (d |Z, Y ) |
Z=m
Z

,

and check conditions (3).

Step 6. The distribution of d |Y is approximately normal with mean m
d
and covariance matrix

(I−Ṁ
d
Ṁ
Z
)−1S

d
/n.
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